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1. INTRODUCTION

There is considerable interest in developing means of predicting bubble-size distributions in
turbulent two-phase dispersions. An understanding of the physical mechanisms determining
bubble size is crucial to any detailed theory of the transfer of heat, mass and momentum
between phases, and is also necessary for the framing of rules for the design of reduced-scale
laboratory models to simulate bubble and droplet flows in industrial plant.

The complexity of turbulent two-phase dispersed flows necessitates analysis in statistical
terms. The primary contributions to the study of such flows are those of Kolmogoroff (1949)
and Hinze (1955). These authors independently suggested that the maximum size of bubble
stable against breakup by the turbulence could be estimated by means of dimensional analysis
based on the hypothesis that the key parameter characterizing the structure of turbulence
fluctuations is the rate of energy dissipation in the flow. The purpose of the present brief
communication is to point out that a similar line of argument can be applied to coalescence. It
turns out that in a turbulent environment there is a minimum size of bubble stable against
coalescence, as originally discovered empirically by Shinnar (1957).

Attention will be confined to the case in which the continuous phase is liquid, and it will be
assumed that the intensity of agitation is sufficient to render buoyancy effects negligible, so that
it is immaterial whether the dispersed phase is liquid or vapour (i.e. drops or bubbles). Detailed
predictions are presented only for circumstances in which the bubble surface is effectively
immobilized, e.g. as a result of surface-active contaminants.

No account is taken of the way in which the presence of the dispersed phase affects the
turbulence of the continuous phase (see Lance 1979 for data on this effect); the drops or
bubbles are regarded as passively acted upon by fluctuating stresses which are assumed to be
the same as would obtain if the continuous phase alone were present.

Experimental studies of the factors determining bubble size have made use predominantly
of either the stirred-tank configuration, in which a two-phase mixture in a closed vessel is
agitated by a rotating or reciprocating paddle, or turbulent two-phase dispersed flow in pipes.
These are the arrangements envisaged in the following discussion.

2. DESCRIPTION OF THE TURBULENCE

The structure of the turbulence will be described in the manner originally proposed by
Kolmogoroff (1941 a,b,¢) and subsequently discussed by Batchelor (1953). The turbulence
eddies are considered to fall broadly into three categories, referred to, in decreasing order of
size, as the energy-containing range, the inertial subrange and the viscous range. Energy is
envisaged as cascading from small to large wavenumber components of the flow, i.e. from the
energy-containing range to the dissipative structures of the viscous range via the eddies of the
inertial subrange.

The velocity and length scales of the energy-containing eddies are identified with the
turbulence intensity, u, and the integral scale, ! (i.e. the integral of the two-point velocity

709



710 BRIEF COMMUNICATION

correlation function: Batchelor, 1953). If these two quantities are unknown for the system of
interest, crude estimates may be made. For a stirred tank, u is expected to be of the order of the
speed of the impeller tip, while / is probably comparable with the impeller radius; for a flowing
system, u is usually between 5% (for pipe flow and boundary layers) and 25% (wakes and jets)
of the variation in mean velocity across the flow and ! is of order 10% of the flow width
(Townsend 1976).

Eddies of the inertial subrange are largely independent both of the large-scale geometry of
the flow and of the small-scale dissipative eddies. Since the functional role of the inertial-
subrange eddies is simply to convey energy upwards through the wavenumber spectrum, their
structure is supposed to be the same for all flows with the same energy dissipation per unit
mass, €. The latter quantity can be measured (e.g. by plotting the torque-speed curves for the
impeller in the stirred-tank arrangement, or by pressure-drop measurements in flowing systems)
or alternatively estimated from the relation

e~ ufl

(Batchelor, 1953). Here, as elsewhere below, the symbol ~ denotes equality within a factor of
order unity.

The viscous range is responsible for the final degradation of mechanical energy into heat and
is hypothesized to have a universal isotropic structure which depends only on the quantity of
energy which it is required to dispose of, ¢, and the kinematic viscosity, », the property which is
the ultimate agency of dissipation. Dimensional analysis then gives a natural length scale of
(v3/e)3[ for these smallest eddies.

The Kolmogoroffi-Hinze prediction of maximum bubble size follows easily from the
foregoing physical picture. It is supposed that a bubble of diameter d breaks up if a critical
Weber number of order unity is exceeded:

2
Z/Ad> const. [1]

where p is the density of the continuous phase, o is the surface tension and A is the velocity
difference across the bubble. The relation [1] may be regarded as the condition for transient
pressure fluctuations associated with the turbulence to overcome capilliary forces which tend to
keep the bubble intact. Now, it is usually observed that bubble sizes are such that (V3/6)‘l‘< d<
I, so one expects bubble breakup to be effected by eddies in the inertial subrange. These eddies
have no intrinsic velocity or length scale, so the only possible expression for A is of the form

A~ (ed)'. (2]
Substitution of [2] into [1] then yields
d] -~ (o,/p)slse—zls [3]

where d; is the diameter of the largest bubble stable against breakup.

Possibly the clearest evidence for the validity of this result when coalescence, wall effects
and other complications are excluded is provided by the work of Sevik and Park (1973), who
injected bubbles into the irrotational core of a water jet and measured the downstream distance
at which breakup by the developing turbulence occurred. Many other experimental studies have
shown that d, or the Sauter mean diameter (which is expected to be roughly proportional to d,)
follows the trend given by [3]: see, for example, Clay (1940), Vermeulen, Williams and Langlois
(1955), Calderbank (1958), Paviushenko and Yanishevskii (1959), Rodriguez, Grotz and Engle
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(1961), Sprow (1967), Mlynek & Resnik (1972) and Coulaloglou & Tavlarides (1976), all of
whom carried out experiments on the stirred-tank geometry, and Baranayev, Teverovski &
Tregubova (1949), Middleman (1974), Kubie & Gardner (1977) and Karabelas (1978), who
studied two-phase pipe flow. Results at variance with [3] (Roger et al. 1956, Sleicher 1962, Paul
& Sleicher 1965, Middleman 1974, Collins & Knudsen 1970) may be plausibly attributed to
secondary factors such as buoyancy and the persistence of initial bubble-size distributions.

In order to extend this kind of analysis to coalescence it is necessary to derive an expression
analagous to [1] describing the conditions under which two bubbles coalesce.

3. MECHANISM OF COALESCENCE

The coalescence of a pair of bubbles occurs in two stages: (i) the draining of the intervening
film of continuous-phase liquid to a critical thickness, h, which is thought to be between 10 and
100 nm (Lee & Hodgson 1968); (ii) the rupture of the remaining film by a mechanism which is
not understood and may involve non-continuum effects. The first of these steps is ordinarily the
slower and hence determines the overall duration of the coalescence process.

A number of attempts have been made to describe the film-drainage stage mathematically
(Lee & Hodgson 1968, Murdoch & Leng, 1971, Reed et al. 1974, Ivanov & Traykov, 1976,
Traykov & Ivanov 1977, Jones & Wilson 1978) and several detailed experiments have been
carried out (Scheele & Leng 1971, Kirkpatrick & Lockett 1974, Vijayan et al. 1975). These
studies reveal that.the film-drainage process cannot be described in simple terms. Among the
difficulties encountered are: (i) if a realistic zero-tangential-stress boundary condition is applied
to the draining film and surface tension is correctly included, a singular perturbation problem is
generated which requires matched asymptotic expansions for its solution; (ii) if the bubbles
collide with appreciable velocity, circulation patterns within the bubbles impose on the film
interfacial shear stresses which assist drainage, greatly increasing computational difficulties; (iii)
the area of the draining film varies with time: collisions at low relative velocities, being
associated with initially small film areas, are more likely to lead to coalescence than collisions at
high relative velocities, which involve large deformations of the bubbles and hence the rapid
formation of a large-area, slowly draining film.

To avoid these complications, which would mask the straightforward nature of the sub-
sequent dimensional analysis, simplifying assumptions are necessary. It will be supposed that
the two bubbles are pressed together by a steady force, F (which will later be related to
turbulent pressure fluctuations), and that drainage takes place between rigid planes. The
dynamics of the intervening film is then the same as for a film trapped between two discs, as
indicated in figure 1. The assumption of a steady force pressing the bubbles together is
equivalent to neglecting the period of first contact prior to the attainment of a quasi-steady
state. This will be valid unless coalescence is very rapid. The assumption of drainage between
rigid planes (rather than free surfaces) restricts the analysis to bubbles whose surfaces have
been immobilized by surfactants, or to droplets of a dispersed phase whose viscosity is much

torce F

¢
A

Figure 1. Model for film drainage prior to coalescence.
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higher than that of the continuous phase. The analysis could, in principle, be generalized to
cover the case of bubbles with mobile surfaces if one were willing to make use of numerical
results for film-drainage times taken from the theoretical studies mentioned above.

Calculation of the time 7 required for the films shown in figure 1 to drain to the rupture
thickness # is a classical lubrication problem; it is easily shown that

_ Imust
2Fh’

T

where 4 is the dynamic viscosity of the continuous phase, s is the radius of the film and F is
the force pressing the bubbles (or discs) together. Consideration of the pressure within the
deformed bubbles gives

F =47s%old

7 Pd (d/a”) . [ I
32 7 ]

4. MINIMUM BUBBLE SIZE IN TURBULENT FLOW
In order to apply the result [4] to turbulent dispersions, an expression for F is needed. If it
is assumed, as in the Kolmogoroff-Hinze theory, that the eddies responsible for coalescence
belong to the inertial subrange, then dimensional analysis indicates that F ~ pA%d?, or, using [2],

F~ p€2/3d8/3

so that [4] can be written

3
G Ty wpePd*(d|ah). [5]

In an agitated dispersion, bubbles are continually being brought together and then moved apart
by turbulent fluctuations. Let T denote the characteristic timescale of a two-bubble encounter,
ie. the length of time during which the situation shown in figure 1 persists before the two
bubbles are moved apart again by the turbulence. Again assuming that eddies of the inertial
subrange are the cause of bubble movement, dimensional analysis yields

T ~(d*e)". (6]

A simple criterion for coalescence is 7< T. In other words, unless the intervening film thins
down to the critical rupture thickness h in the time available before bubbles are separated
again, coalescence does not occur. Combining [5] and [6] we obtain the result that coalescence
is impossible unless d < d, where

2.2\ 1/4
d2~2.4(51) . 7
upe

This is the central result of the present paper.
Since arguments based on Kolmogoroff’s hypothesis are statistical in nature, it would be
more accurate to say that bubbles whose diameter exceeds d, are much less likely to coalesce
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than smaller bubbles in the dispersion; similarly, bubbles slightly below the threshold size will
not coalesce as easily as very small bubbles. The formula[7] is to be interpreted merely as a
rough estimate of the size of the smallest bubble stable against coalescence.

Two aspects of the theory require further comment.

First, it has been assumed that drainage takes place between planes steadily pressed
together for a period determined by the lifetime, T, of turbulent fluctuations. If this picture is to
be plausible it is necessary to show that the natural rebound time for colliding droplets, ¢, is
substantially less than T, so that the droplets promptly separate when the turbulence eddies are
no longer favourably configured. The demonstration is straightforward. The natural vibration
frequency of a droplet (Sevik & Park 1973) is of order

()
)

so, making use of [6],

t() d 5i6
T~<d_1> '

Hence, provided d, < d,, self-consistency is assured (but see below).
Secondly, it is necessary to check that the predicted d, is appreciably larger than the
Kolmogoroff microscale, (#*/€). Directly from [7],

I 112
&/ (%) - 2.4—("":)

Taking h =10"m and inserting physical properties appropriate to water at ambient tem-
perature, the ratio is 6.4. This is perhaps just sufficiently large to justify our assumption that
coalescence is controlled by eddies of the inertial subrange; for a more viscous continuous
phase, however, the theory presented here will need modification.

5. THE COALESCENCE-PREVENTION REGIME

Shinnar (1957, 1961) and Shinnar & Church (1960) set up experiments in which the dominant
factor determining droplet size was not breakup but the prevention of coalescence by the action
of turbulence. A series of measurements was performed on dispersions of droplets in a stirred
tank, to which a protective colloid had been added (immobilizing the droplet surfaces). It was
found possible to form a dispersion in which no coalescence at all occurred at constant stirrer
speed. This was proved by injecting dye into a single drop and observing that none spread into
other droplets over a period of several hours. If, however, stirrer speed was reduced,
coalescence took place at once until a new, larger stable droplet size was established,
whereupon no further intermixing, as tested by the dye tracer, occurred. For these dispersions,
stabilized against coalescence by the agitation imparted by the stirrer, the mean droplet size
was found experimentally to be proportional to €™'4, in precise agreement with [7] above. It
was also found that if e exceeded a critical value, which will be denoted here by ¢, it was no
longer possible to prevent intermixing and the more usual variation of droplet size as € ¥* then
appeared (see [3]). The observed behaviour is depicted by the solid line in figure 2. Shinnar
refers to the region € < ¢, as the coalescence-prevention regime.

Not only does [7] give the correct trend of Shinnar’s data with e in the coalescence-
prevention regime, it also predicts satisfactorily the absolute size of droplets, as will now be
shown. Shinnar did not measure e directly, so it is necessary to estimate this parameter in the
way indicated in section 2 above: if D is the impeller diameter and N the number of



714 BRIEF COMMUNICATION

bubble diameter

L

Figure 2. Variation of d, and d, with e (logarithmic plot).

revolutions per unit time, we take u ~ 7DN, [ ~ D2 and € ~ u*/{ = 62D*N°. For a 5-inch paddle
at 156 rpm this method yields € = 17.6 m?/s®. The physical properties appropriate to Shinnar’s
dispersions are u =360 uN s/m? o =0.0385N/m, p =964 kg/m®. Finally we take h=0.1 um,
since it seems unlikely that the thinner films sometimes observed in quasi-static coalescence
experiments could survive in the highly agitated environment of a stirred tank. Putting these
figures into {7) gives d, =95 wm, which is to be compared with an experimental value of 128 um
(Shinnar 1961). In view of the crude manner in which € has been estimated, the agreement may
be regarded as encouraging.

Another way of testing [7] against Shinnar’s data is to consider the magnitude of .
Experimental evidence (Hinze 1955, Kubie & Gardner 1977) suggests that [3] becomes a true
equality if a numerical factor of 0.725 is included on the r.h.s. It follows that

2.5\ 1/3
€ = 0.0034 (%h"—,o) . 8]

This formula has limited predictive value, however, because the numerical coefficient on the
r.h.s. is extremely sensitive to the assumption that the energy dissipation is uniform throughout
the dispersion. Suppose, for example, that in a stirred tank there are regions in which the
turbulence intensity falls to a third of its value near the impeller, implying a local reduction in €
by a factor of 27 (ignoring any possible variations in /). Coalescence will be favoured in these
quiescent regions, and it is readily shown that e, will be smaller than the value given by [8] by a
factor of 243. For this reason, it is probably more useful to regard ¢, as a parameter which must
be determined experimentally, and then to use [8] to estimate the effective value of h. For one
of Shinnar’s dispersions, d; and d, became equal to about 440 rpm, which implies €, = 394 m%/s>.
Assuming that a three-fold variation in turbulence intensity did, in fact, occur within the test
vessel as discussed above (although there is no experimental evidence on this point), it then
follows from [8] (with the numerical coefficient reduced by the factor of 243) that A = 0.24 um,
a plausible result.

It seems that the present treatment gives a fairly satisfactory explanation for Shinnar's data.
Shinnar (1961) himself attempted to explain the dependence of droplet size on € in the
coalescence-prevention regime by postulating that two approaching droplets cannot coalesce if
the kinetic energy of collision exceeds the work necessary to affect their reseparation. To
estimate this latter quantity he made use of expressions derived by Bradley (1932) and
Derjaguin (1934) for the force between two macroscopic spheres which arises from the van der
Waals attraction between individual constituent molecules. Valentin (1967) has drawn attention
to the shortcomings of such an argument. The present analysis has the advantage of being
based on familiar concepts of fluid mechanics.

It would appear from figure 2 that two-phase dispersions for which € <e¢, differ in an
essential way from those where € > €. If € <¢, (so that d, < d,) bubbles with diameters lying
between d, and d, are too large to coalesce and also too small to be broken by the turbulence;
since these bubbles are stable, the bubble-size distribution must be determined largely by initial
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conditions, and hysteresis phenomena are to be anticipated if e is varied. If € > ), on the other
hand, a true dynamic equilibrium is possible between coalescence and breakup. (It should be
remarked that the present coalescence theory is not strictly applicable when e > ¢, because
then t,> T, as discussed in Section 4.) The significance of the existence of two distinct types of
dispersion has been emphasized by Church & Shinnar (1961). Shinnar’s experiments suggest that
for dispersions in which the continuous phase is near ambient temperature, €, is of order
10%-10° m?/s®>. Such values are commonly encountered both in laboratory experiments and
industrial plant, so one should expect to see both kinds of dispersion in practice.

6. OTHER COMPARISONS WITH EXPERIMENT

The dependence of d, on o, p and pu cannot be deduced directly from [7] because the
variation of h with physical properties is unknown. It is nevertheless of interest that if & is
independent of g, it follows from [7] that the diameter of the largest coalescing bubble varies as
p~'™, so one should expect average bubble size in an agitated dispersion to decrease only
slowly as u increases.

The predicted weak dependence of bubble size on continuous-phase viscosity seems to be in
agreement with some work of Calderbank (1958), who found in a series of experiments on
liquid-liquid and gas-liquid dispersions that correlations for bubble size were improved by
inclusion of a factor u~". However, Vermeulen ef al. (1955) in a similar set of experiments
found that bubble size tended to increase slightly with increasing continuous-phase viscosity.
Calderbank (1956) attributed this discrepancy to Vermeulen’s failure to take viscosity into
account when inferring € (which was not directly measured) from the known stirrer speed.
Pavlushenko & Yanishevskii (1959), in yet another set of stirred-tank experiments, found, in
agreement with Calderbank, a weak inverse dependence of bubble size on continuous-phase
viscosity.

Thus, although there is some support for the kind of viscosity dependence given by [7], the
experimental evidence is too contradictory to allow any firm verdict.

7. DISCUSSION AND CONCLUSIONS

It has been shown that the Kolmogoroff-Hinze theory can be extended to coalescence, and
that the result takes a simple form [7] in the case where bubble surfaces are immobile. The
derived formula provides an explanation for the results of Shinnar’s important experiments on
the coalescence-prevention regime.

The treatment amounts to little more than dimensional analysis guided by a simplified
physical picture of the coalescence mechanism, in the same spirit as the original Kolmogoroff-
Hinze breakup theory. The true complexity of coalescence events has been disregarded in
favour of an easily understood idealization, just as bubble breakup is, in reality, substantially
more complicated than envisaged in the Kolmogoroff-Hinze description (van’t Riet & Smith
1973, Stephenson 1974, Park & Blair 1975). Furthermore, no attempt has been made to discuss
kinetic aspects of the coalescence and breakup processes, although this is clearly necessary to
obtain bubble-size distributions (Valentas & Amundson 1966, Jakubowsky & Sideman 1976,
Narsimhan et al. 1979). In spite of these limitations the approach set out above may prove a
useful aid to the interpretation of data and the formulation of two-phase modelling rules.
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